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Abstract 

We reformulate the standard local equations of general relativity for asymptotically fiat space- 
times in terms of two non-local quantities, the holonomy H around certain closed null loops on 
characteristic surfaces and the light cone cut function Z, which describes the intersection of the 
future null cones from arbitrary space-time points, with future null infinity. 

We obtain a set of differential equations for H and Z equivalent to the vacuum Einstein equations. 
By finding an algebraic relation between H and Z and integrating a linear o.d.e, these equations 
are reduced to just two coupled equations: an integro-differential equation for Z which yields the 
conformal structure of the underlying space-time and a linear differential equation for the "vacuum" 
conformal factor. These equations, which apply to all vacuum asymptotically fiat space-times are 
however lengthy and complicated. They nevertheless are amenable to an attractive perturbative 
scheme which has Minkowski space as a zeroth order solution. 
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I. Introduct ion 

The vacuum Maxwell fields on Minkowski space can be expressed as Kirchhoff integrals 

taken over initial data, i.e., data given on a Cauchy surface. If we replace the spacelike 

surface by a characteristic, or null, surface, we get the analog to the Kirchhoff integral, the 

D'Adhemar  integral [1]. Maxwell and Yang-Mills fields on both fiat and asymptotically 
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fiat space-times have been given such D'Adhemar-like reformulations with considerable 

success [2-4]. The present work is an attempt to extend this technique to general relativity. 
We derive differential equations whose solutions would allow us to express the gravitational 

field at any given space-time point as a D'Adhemar-like integral over free data given on a 

characteristic surface. 
First consider the well-understood analog to our problem, determining the Maxwell 

field at some interior point on Minkowski space. Free data is given on the null surface 
Z, which is the three-dimensional boundary of the space-time manifold .M. The future 

light cone emanating from a given interior point x a would intersect the future half 2 -+ 

of Z, the intersection being a 2-surface. We refer to this 2-surface as the "light cone cut" 
of 77 + associated with x a. The D'Adhemar formulation of the Maxwell equations involves 

integrals over the free data given on the light cone cut. It is crucial that the light cone structure 
of the underlying manifold be known, in order to perform this integration. Although for 

the Minkowski metric this is readily available, it takes considerable effort to obtain this 

information for an arbitrary background. A generalization of the D'Adhemar formulation 
of the Maxwell field in Minkowski space to the case when the background is curved is 

available [4], although the resulting equations become complicated. A further generalization 
of this technique to Yang-Mills fields on both fiat and asymptotically fiat space-times are 

also available [5]. In these (Yang-Mills) cases, in addition to the above mentioned difficulty 
in the determination of the light cones, the final equations are further complicated by the 
introduction of non-linearity. The D'Adhemar integral (for the Yang-Mills case and the 

Maxwell case on a curved background) shows explicitly that propagation becomes non- 

Huygens--i.e.,  propagation is not confined to the light cone. 

A D'Adhemar-like formulation for general relativity might seem inaccessible since the 
gravitational field is not separable from the background and its characteristic surfaces: 

it requires simultaneously solving for the field and the null surfaces. It is nevertheless 
possible to give such a formulation by dividing the equations into two parts: one resembling 

the D'Adhemar integrals for a (self-dual or anti-self-dual) Yang-Mills field, and the other 
yielding the null surfaces that are needed to give meaning to the integrals in the first part. 
The two parts are strongly coupled. 

The first set of equations is equivalent to the D'Adhemar version of the self-dual and the 

anti-self-dual Yang-Mills equations for the self-dual and anti-self-dual parts of an 0(3, 1) 
connection, respectively, on a space-time manifold .h//with an arbitrary asymptotically fiat 
metric. The basic idea is to treat a special case of the 0(3, 1) Yang-Mills connection so that 
it agrees with that of the background gravitational connection. This is done by imposing 
very restrictive conditions on the Yang-Mills data. 

The second set of equations determines the light cones of the manifold .M. For a given 

metric, one could have obtained this information by integrating the null geodesic equation 
(see for example [6]). However, in our case where the metric is as yet undetermined, we 
derive differential equations for the characteristic surfaces that are coupled to the 0(3, 1) 
Yang-Mills field equations. 

The above two parts, which look hopelessly intertwined at first, nevertheless give re- 
suits that are tractable and comprehensible. The exact equations, while complicated, are in 
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null generators 

Fig. h Bondi coordinates of 2-. 

cut of ~\ ~ past c~ fr~ 

Fig. 2.2-, a cut of 2- and a past cone of ~'. 

principle solvable since asymptotically flat space-times exist. An attractive feature of  this 

approach is that the equations are amenable to an approximation scheme wherein the nth 

order correction to the field is expressible as D 'Adhemar  integrals in terms of  lower order. 

As the material of  this paper is not at all close to mainstream ideas, we believe that it 

might be appropriate first to give a broad perspective before going into the details. 

There are two different sets of  ideas that we try to weld together. The first is based on 

the use of  characteristic surfaces on arbitrary asymptotically fiat Lorentzian space-times. 

We make essential use of  the future light cones Nx from arbitrary space-time points x a and 
their intersections Cx with future null infinity 2 -+ (referred to as the light cone cuts)--as  
well as the past light cones from points on 2 -+. See Figs. 1 and 2. These characteristic 

surfaces are used to give the D'Adhemar-like reformulation of  the Yang-Mills equations. 

Using Bondi coordinates (u, ~, ~) on 2-+, Cx is described by a function we call the light 
cone cut function on "/-+of the form u = Z ( x  a, ( ,  ~ ), parametrized by x a. The cut function 

plays a dual role: for fixed interior point x a it describes the "cut" of  Z +, and for fixed point 
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(u, if, ~) on Z +, it describes the past light cone of that point as x a is varied. From the latter 
point of view the cut function becomes a three-parameter family of characteristic surfaces. 

The conformal structure of the space-time can be recovered from knowledge of the cut 
function, i.e., the conformal metric can be explicitly written in terms of derivatives of Z. 

The specific metric in the conformal class is chosen so that, in a special null coordinate 

system, one component of the metric (g01) is taken as one. Geometrically this makes one of 

the coordinates an affine parameter. More specifically, the conformal metric (picking out a 
specific member in the class) can be completely expressed in terms of A, defined from Z by 

A = ~2Z. The quantity A becomes one of our basic variables. These ideas are developed 

in Section 2. 
The second set of ideas of concern to us (see Section 3) is based on the fact that, in some 

sense, the 0(3, 1) Yang-Mills equations contain, as a special class of solutions, the vacuum 
Einstein equations. The full Yang-Mills curvature F can be broken into four pieces; self- 

dual and anti-self-dual on the internal indices as well as self-dual and anti-self-dual on the 
space-time indices, so that 

F = + F  + + + F -  + - F  + + - F - ,  (1) 

where the + , -  symbols in front refer to space-time indices and afterwards to internal 

duality. The Einstein equations are almost encoded [7] into the algebraic statement that 
+ F -  ------ F + ---- 0 needing for completion only an appropriate restriction of the data. 
The basic idea is to think of solving these equations (for the self-dual and the anti-self- 

dual fields + F + a n d  - F -  and their respective connections) on a given asymptotically fiat 
vacuum background metric, then introducing a soldering form and restrict the data so 

that it coincides with the background connection data. An important technical device is to 
give these equations a D'Adhemar-like formulation which, as was mentioned earlier, can 

be done for Yang-Mills fields. The tool for this is the use of the holonomy operator H 

(around special null paths) as the primitive variable for the Yang-Mills fields. The Bianchi 
identities, equivalent (because of the self- and anti-self-duality) to the Yang-Mills field 
equations become one set of our final equations. They are symbolically written as equations 
for H as 

/3/~(H, A) ---- 0 (2) 

with A being the restricted characteristic data. 
When the soldering form (a tetrad field) is introduced, we can obtain a set of relationships 

between the space-time variable A =-- ~)2Z, and H, that we refer to as the A(H)-relations 
given symbolically by 

A = A ( H ) .  (3) 

Our third set of equations, referred to as the "field equations", is simply the algebraic 
equations 

+ F  = - F  + = 0 ,  (4) 
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expressed as functions of  the components of  the holonomy operator, symbolically written as 

79(H) = 0. (5) 

Our final task is two-fold: 
(1) to eliminate the holonomy variables from these three relationships and be left with 

equations only for the characteristic surfaces, i.e., equations for Z (Section 3.5). These 

equations constitute the conformal Einstein equations and yield an equation that we 
refer to as the light cone cut equation (LCCE) which involves only A and the free data; 

and 
(2) to find an equation, derivable from Eq. (5), for the conformal factors that converts the 

conformal metric to a vacuum metric. 
In Section 4 we discuss the linearization of the theory and a perturbation scheme. 

2. Light cone cuts 

Let us consider a real, four-dimensional, asymptotically flat space-time .A4 with a con- 
formal (unphysical) metric gab and future null boundary 27 +. We use the Bondi coordinates 

(u, ~', ~) to coordinatize 2 -+. A coordinate grid of  the (u = const.) and the (if, ~ = const.) 

surfaces on 27+is shown in Fig. 1. 
Consider the future light cone Nx emanating from an internal point x a. A relation among 

the coordinates (u, ~', ~) such as u = f(~ ' ,~)  describes locally a 2-surface which we refer 
to as a 'cut ' .  The intersection of Nx with 27+ is a special cut, the 'fight cone cut' (Fig. 2), 

given by 

u = Z(x  a, ( ,  ~). (6) 

We refer to Z(x  a, ~, ~) as the light cone cut function. The function Z(x  a, ~, ~) is our basic 

variable. The conformal metric, i.e., a specific one in the conformal class, can be given as 

an explicit function of Z [8]. 
One could also interpret Eq. (6) as a description of the past light cone of the point (u, ~, ~) 

on 27+(also shown in Fig. 2). That is, keeping u, ~" and ~ fixed, if we vary x a, this equation 
is the locus of  all space-t ime points x a that are null connected to the point (u, ~, ~), which 
by definition is the past light cone of (u, ~, ~) on 27+. From this important observation, we 

see that for fixed values of  (u, ~, ~), VaZ is a null covector, i.e., 

gahZ, , (x ,  ~, ~)Z,b(X, ~', ~) ---- 0. (7) 

Thus it follows that Z,a(x ,  ~, ~) at the point x a sweeps out the null cone at that point as 
we vary ff and ~. Although is has been discussed elsewhere [8] and we will not go into the 
details, it is from Eq. (7), by taking several ~" and ~ derivatives, the entire conformal metric 
can be reconstructed completely in terms of Z or more specifically A ~ ~2Z. 

The sphere of  null directions at the point x a is coordinatized by ~ and ~. We use these 
coordinates for S 2 instead of the usual (0, ~b) because covariant differentiation on the sphere, 
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which appears in many of the equations, takes on a particularly simple form in terms of 
((, (). We introduce the operators j~ and ~ [9], 

and 

~as = (1 + (~) l -s  0~[(1 + ~ ) s a s ]  (8) 

; q  
j~as = (1 + (( ) l+s  O-~[(1 + ( ( ) - S a s l ,  (9) 

which operate on the quantity as defined on the sphere, where s, the spin weight, is assigned 
according to how a transforms under a specific transformation. (See [10] for more about 
this transformation and properties of j~ and ~.) It helps to think of jk and ~ loosely as 
differentiation with respect to ( and ( respectively. 

Assuming that we know the light cone cut function, and with the above definitions of j~ 
and ~, the following set of quantities is well defined: 

u = Z(x a, ¢, ~), (10) 

o) = ~ Z ( x  a, ¢, ( ) ,  (11) 

& = ~ Z ( x  a, ( ,  ( ) ,  (12) 

R = ~ Z ( x a , ( , ~ ) ,  (13) 

with (u, R, to, &) having, respectively, spin-weights (0, O, 1, -1). This set defines a sphere's 

worth of coordinate transformations on the space-time parametrized by ((, (). Let 

(00,01,0+,0 -)  ~ (u,R,o),6)) .  (14) 

With this notation, the ((, ()-dependent coordinate transformation can be written as 

0 i = Oi(x a, ~, ~), (15) 

where the indices i, j will take on the values {0, 1, + ,  -}. 
We now construct 

~2Z ~ A ( x  a, ~, ~). (16) 

The quantity A and its conjugate can be expressed as functions of the 0 i by inverting the 
transformation (15) and eliminating the x a to obtain 

A(O i, ( ,  ( )  = ~2Z.  (17) 

Later we show that the (conformal) Einstein equations can be encoded into the choice of 
A(O i , ( ,  ( ) .  Note that if A(O i , ( ,  ( )  is given with 0 i replaced by Eqs. (10)-(13), Eq. (17) is 
a second-order differential equation for Z; the x a are the constants of integration. Also if 
is applied to a function F(O i , ( ,  ( ) ,  it means the total derivative, treating the 0 i as functions 
of ((, (). 
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With the 0 i coordinate system, we have a one-form basis: 

dOi = Oia dxa, with 0i, a = Oia 

and the dual basis 

0 0 
O0 ~ = oai OX a , 

with the relations 

i a i O a O j = ~ j ,  

0 i 0 b . = ga b . a i 

Any vector Va can be written as Va = V/0 / and in particular we have 

A a = A iOia = A oZa  + ' "  

The A i play a basic role in what follows. 
The metric, expressed in the 0 i coordinates, i.e., gi j  = OiaOJgab takes the form [7], 

h 11 hi+ 
(g i j )  = ~22 h l+  h + +  , 

h l -  - 1  

with the h's  explicit functions of A.  

Note also tha t  ~Oia can also be expressed as a linear combination of the Oia, i.e., as 

~oia = T jOJl .  

For example, from Oia -~ {Za, ¢3~Za, ~Za, ~Za}, we obtain that 

 00a- + - - 0  a , 

OO+o-= A a  = A , iO  i ,  

OO-a = O l a ,  

~Ola = Tl iOia  , 

with 

and 

Tli = ( l /q )  [AI(~Ai q- A0~+i + A-61 i + ~l+Ai - 23~) 

+~Ai  + Ao~-i  + A+,~li -'}- A - f l i  - 2~+i],  

q = (1 - Alfiil). 

Likewise, 

~oia --i j = T j O  a 
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18) 

19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
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--i 
with Tj obtained from the complex conjugate coefficients of T/j. The explicit form of these 
matrices with row and column indices 0, 1, + ,  - are: 

o ' 

Ti j = T o Tll  TI+ 
AR A+ 

1 0 

0 0 0 1 ) 
--i y l  0 y11 y l +  "~1_ 

Tj  = 0 1 0 
Ao A1 A+ O_ 

(31) 

(32) 

3. Holonomy and Einstein equations 

3.1. 0(3, 1) Yang-Mills equations 

We begin with a real four-dimensional Lorentzian manifold .A4 where we assume that 
the light cone structure of the previous section is known and study an 0(3, 1) Yang-Mills 
field. The idea is to (roughly) think of the associated vector bundle as being the tangent 
bundle of the space-time, though of course a soldering form is needed (see Section 3.2) to 
make this precise. 

^ ^ 

The connection one-form, which is antisymmetric in the Lorentzian indices, i, j . . . . .  
can be decomposed into its self-dual and anti-self-dual parts, 

^ ? ^ 

t] - i  ya i ] = ya + "F Ya .i' (33) 

where self-dual and anti-self-dual are defined by 

±i (ya ~] tga^} )  , (34) ×a 2=½ m ,i 

and duality by 

~ ^ ^  

]1~ ~] = l ~stJ ~yake  , (35) 

where e'J ~i is the alternating symbol with ~?0123 : -- 1. The curvature tensor can be similarly 
decomposed as, 

= F- i^  Fab i ] Fa+b t ] "-F ab j '  (36) 

where the self-dual and anti-self-dual parts of F are constructed from the self-dual and 
anti-self-dual connections respectively, i.e., 

F +~  ̂: V y+! + [ya i ,Y~]i] .  (37) ab j [a b]j 
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With the above decompositions, the Bianchi identities and the field equations become 

and 

159 

+ ± 
VlcFa:   + [×tc' Fab ] ] = 0 (38) 

i t  Fj; = 0, va <ib ] q- [y+a ,  (39) 

respectively. One is thus dealing with two independent complex Yang-Mills connections 
and fields. 

It is possible to further decompose each of the two curvature tensors, now on the space- 
time indices, into its space-time self-dual and anti-self-dual parts, where we have used 
the existence of the Lorentzian metric. We will refer to space-time duals as left duals and 

internal duals as right duals. The full curvature then has four terms: 

(1) the left and right self-dual part +£',%; 

(2) the left anti-self-dual and right self-dual part -Fa~; 

(3) the left self-dual and right anti-self-dual part + Fa~; 

(4) the left anti-self-dual and right anti-self-dual part -Fab. 

Parts (1) and (2) are coupled as are parts (3) and (4), in the sense that they depend respectively 

on the V + and y - .  
We next assume that 

- + __+ Fab -- Fab : 0. (40) 

From this the field equations (39) are automatically satisfied via the Bianchi identities (38). 
Thus we have two independent Yang-Mills fields: a (left) self-dual field +Fa+ and a (left) 

anti-self-dual field -Fa~ satisfying the Bianchi identities (38) and the above condition (40). 

These two equations are rewritten in terms of a new variable, viz., the holonomy operator. 
in the next section. 

Eq. (38) and (40) with a special class o f  data (on 2 -+) are equivalent to the Einstein 

equations. See Eq. (49). 

3.2. Holonomy and the Bianchi identities 

The variable that we have been (loosely) referring to as the holonomy operator (associated 

with the Yang-Mills connection Ya) and denoting it by H, is more accurately the difference 
between the holonomy operator associated with an infinitesimal path and the identity. It 
should really be called the infinitesimal holonomy operator or the differential holonomy 

operator, though we will continue with the original name. There are two distinctly different 
sets of paths Zax((, ¢) and Z{x(¢, ~) (with their own holonomies H and H )  defined in the 
following manner: Consider an interior point x a of A4. For Ax ((, ~) we choose two null 
rays on the cone Nx that are infintesimally separated, namely, £x((, ~) and £x(( + d~', ~), 
extending from x a to Z+(see Fig. 3). We then form a closed loop by connecting the end 
points of these two rays on 2 -+ . At "/+the two-form constructed from this connecting vector 
and the tangent vector to the geodesics is self-dual. (In Minkowski space the entire path lies 
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I ~ """-~ ~ ( / ~ ,  ~ (~ + rl~, ~_~) 'F) 

x 8 

Fig. 3. Volume V. 

in a self-dual blade; it is the loss of this property in curved space-time that is the source 
of non-Huygens propagation for linear rest-mass zero fields.) In a similar manner, one can 
choose the anti-self-dual triangle ,~x((, () ,  which has £x ( ( , ( )  and ex(¢, ( + dr) for its 
sides. 

For our 0(3, 1) connection, the vectors that are being propagated around the closed loops 
A x and Z~x are thought of (using a soldering form ~a i (X) introduced below) as being in the 
tangent (or cotangent) bundle. The effect of applying the operators H or H to an arbitrary 
vector V tz at x a is, respectively, 

H # v ( x a ' ( ' ( ) d ( ~  (41) 
VrtZ = VV 8~v + 2P J 

and 

V'~ = VV ( 81zv W - ~ v ( x a ' ( ' ~ ) d ~  ' (42) 

where the P = (1 + ( ( )  is for notational purposes. H takes us from a point on 2-+along 
ex((,  ()  down to x a then back to Z+along £x(( + d(,  ()  and finally back to the starting 
point along a connecting vector on 2-+(see Fig. 3). For parallel transport around this loop 
one obtains the following: 

HlZv(x a, ( ,  ( )  = atzv + (G-1)vb~G#b,  (43) 

where Gl~a(X a, ( ,  ( )  is the parallel propagator that takes vectors from the point x a to 
Z+along the null geodesic £x ((, () ,  and AUv are the asymptotic values (characteristic data) 
of the connection Ya in the direction of the connecting vector on 2 "+. See [7,11] for a 
derivation of this result. 

It will be convenient (see Eq. (60)) to express the above relation in terms of a given null 
tetrad ~,a i (X) (soldering form) defined on A4 and Z+with normalization 

gab~,a~ )~ b) = rl~ ) (44) 

with 
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' ,  1 0 0 
0~] = rl 'J = 0 l " 

o °l 
(45) 

and H ~ ,j = H U v ) J u ) ~ ] ,  etc. Tetrad indices are raised and lowered with rl;) and rl;i, 

respectively. For the tetrad fields Xuf at 2"+we will use the Bondi tetrad {fl~, nt~, m/,, N/, } 

associated with the Bondi coordinates. 
Returning to the Bianchi identities (38), they can be written in terms of the holonomy 

operator and the characteristic data A as 

^ - -  ^ - -  ^ ^ 

-~(H - A ) i j  - ~ ( H  - -  ~)i  _.~ [H --  A, H - -  ~ ] i j  _ [H,  f t]i j  -- O. (461) 

At this point all the functions can be thought of as depending on x a and (,  ~; using Eq. (15) 
they are to be reinterpreted as functions of 0 i and (,  ~. 

A derivation of this result via an integration of (38) over the region V of Fig. 3, can be 
, : ?  , ? , :  , : ~ ?  

found in [12]. Using r/J to raise one of the indices, we obtain H 'J ,  A l j  , and their complex 
^ ^  

conjugates. Since these are skew in the i j  indices, they can be separated into self-dual and 

anti-self-dual parts, yielding 

H ~i} = H (-)~} + h (+)~] and A ~} = A (+)~iJ + A ~-)'i} (47) 

and 

H;J  = H (+);) + h ( - ) f j  and A ~ = A <-)~j + A (+)Tj. (48) 

We have three complex non-trivial components of H which we denote by H,~ and likewise 

three ha, where ~ = {1,2, 3}, as shown in Table 1. As for the characteristic data A we 

choose it to have the very special form: 

0 0 --1 0 ) 

i 0 0 1 --3-B 
Aj = _~rB 0 0 0 ' 

1 --1 0 0 

(49) 

and 

/ i) 
0 0 0 

-i --aB (50) 
A j  = - -  0 " 

- - ~ B  0 0 

This form for the A's comes from the demand that the data for the 0(3, l) Yang-Mills field 

should coincide with that of the background geometry; the asymptotic F's should be the 
same as the asymptotic spin coefficients. The aB is to be the Bondi shear. The self-dual and 

anti-self-dual parts of H can be written out explicitly as matrices, 
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Table 1 
Notation 
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New t}  Spin New i j Spin 
notation component weight notation component weight 

HI - H  ( - ) °+  2 H1 - H  (+)°-  - 2  
H2 - H  ( - )° l  1 H2  - H  (+)°t - 1 
H3 _ H  (-)  1- 0 H3 - -H  (+)1+ 0 
h I - h  ( - )0+ 0 ft 1 - h  (+)0- 0 
h 2 - h  (-)01 - 1  f~2 - h  (+)01 1 
h 3 - h  ( - ) 1 -  - 2  f~3 - h  (+)1+ 2 

I 0 ½(H 01 - H +-)  H 0+ ) 

H(_)~ J - ½ ( H  °l - H +-)  0 0 2 -  
= - H  °+ 0 0 H +-)  _ I ( H 0 1  _ 

0 - H  l -  - - l ( H 0 1  --  H + - )  0 
2 

(51) 

and 

0 I (H°I  + H +-)  0 + "~ 
h(+)~] - I ( H ° I  + H +-)  0 H 1+ H~ / 

= 0 - H  '+ 0 ½(H°' + H + - ) / '  
- H  °-  0 - ½ ( H  °1 + H +-)  o } 

(52) 

and likewise for H. 
^ ^ 

In order to raise and lower the i, j indices, we have to use the null-coordinate version of 
the Minkowski metric r/~] and ~/u. For example, 

H°l = H °° = 0, by skew symmetry, (53) 

H°+ = - H  °- .  (54) 

Also note that the complex conjugate of a quantity, say, H °-  gives us • the 0 and 1 
indices are insensitive to complex conjugation, while + and - are interchanged. Table 1 
displays our notation. 

With this notation the holonomy Bianchi identities (46) become: 

~ h l  -- -~H1 + 2 h i l l 1  - 2 H l h 2  + 2/-/2 = 0, 

~h2 - -~H2 -4- h3H1 - H3(hl q- 1) -4- hi ---- --O'BH1, 

~h3 - ~H3 q- 2h2(H3 - 1) - 2H2h3 ---- - - ~ B  q- 2~BH2, 

(55) 

(56) 

(57) 

where we have the data or "driving" terms (i.e., those that involve ~8) on the right. 
Eq. (46) actually contains this triplet as well as its conjugate--they are the result of taking 
the self-dual and anti-self-dual parts of Eq. (46). This is the first set of equations that was 
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given symbolically as Eq. (2) in Section 1. (Note that the first equation is algebraic in he 
and H2, and the second is algebraic in h3 and/43. We will exploit this structure in Section 
3.4 where we study this set of equations in more detail.) 

For clarity we remark that Eqs. (55)-(57) follow directly from the 0(3, 1) Yang-Mills 
field equations and Bianchi identities with the special data, Eq. (49). No use is made yet of 
the soldering form. 

3.3. The  A ( H ) - r e l a t i o n s  

In the previous section we defined the 0(3, 1) propagator GlZa(X a, (, ()  (converted via 
the soldering form to act on space-time vectors) which takes vectors from a point on 2-+to 

an interior point x a along a null geodesic £x ((, ().  In particular, the tetrad fields {~.i u, ;~u~ } 
that are defined on 2-+can be parallel propagated in this manner to the point x a. The parallel 
propagated tetrad fields at x a are given by 

eia = )J uGl~a, (58) 

where xiu represents the tetrad {£u, n u ,  m u ,  ~ u }  on 2 "+. We use the following notation for 

the parallel propagated tetrad at x a: 

e~i~ =-- { e O a , e l a , e + a , e - a }  =-- { £ a , n , , m a , - ~ a } .  (59) 

If we take two tetrad vectors on 2 "+, one at ((,  ( )  and the other (on the same cut, associated 
with x a) at (( + dr, () ,  and parallel propagate both to the point x a, the difference in term~ 
of the holonomy operator H and the free data A [7] is given by 

a ~ H ~  _ A~^ e }~e a = j j ,  (60) 

" - ~ ~ , i  ~ (6~)  e )~e a = ] -  ]. 

^ ^ ~ 

We have introduced three different tetrad bases: ~.ia, )~itt, and eta . The first of these )Va 

is an arbitrary tetrad given at x a and therefore independent of ( and (.  The second Liu 

is a ((,  ()-dependent Bondi tetrad given on 2 -+. And the third eZa is the result of parallel 

propagating the xiu in from 2-+to x a along £x ((, () ,  and therefore is also ((, ()-dependent. 
From Section 3, we have at our disposal the 0 i coordinates and the associated bases Oia 

and 0 ai at x a. Since any vector at x a can be expressed as a linear combination of either of the 
^ 

two sets {Oia } and {eia }, we call go from one to the other, using the invertible transformation 
^ 

• i i O'a = Z, ~e a. (62) 

We choose one of the 'legs' of the parallely propagated tetrad vectors e°a equal to the vector 
V, Z, i.e., 

eOa =-- £a = Z ,a  =-- OOa - (63) 
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Using this assumption and Eqs. (60) and (61) with our notation from Table 1, the transfor- 
^ 

marion matrix Z'~ -- 27 and its inverse Eii ~ 27-1 can be calculated (by application of j~ 
and ~ to (60) and (61)) and written explicitly as functions of the H's and h's [12]. E7 written 
as matrix is given by 

z i t )  ~--- 

1 o 0 o \ 
,~w'l 0 ~v'l l z l +  , ~ ' 1 / _  

- (H2 +/7t2) 0 (1 +/~l) HI | 
~-(H2 q- h2) 0 H1 (1 --~ hi) ] 

(64) 

with 

~'10 = -~(H2 + h2) + (H2 q- h2)(H2 +/]2) 

+HI(drB + h3) + (1 + hl)(H3 - 1); 

Z'll ---- (1 + hi)(1 + f t l ) +  H1H-l; 

Z'I+ = ~H-I - (H2 + h2)(1 + ftl) - HI  (H2 -/7t2); 

Z '1- = ~/tl + (H2 -/~2)(1 + hi) - HI(H2 + h2). 

Using 27 and its conjugate, and the Eqs. (24), i.e., 

~Oia = Ti jOJa (65) 

and their conjugates, the T's and T's of Section 2 can be expressed directly in terms of the 
H's  and h's via the ~v,i~ by 

l 

T = (5 27) • ~7-1 + YT. ( H  - A) • E - l ,  (66) 

where the boldface represents the corresponding matrices [12]. Since Tt j  was shown in 
Eq. (31) to have the form 

T -- ( T i j )  -~- T 0 T l l  T l +  
AR A+ 

1 0 

(67) 

we obtain from Eqs. (65) and (66) the A(H)-relations: 

A1 ~- A R  = 
2(/~1 + 1)H1 

(/tl + l)(hl + 1) + H 1 H I '  

A+ = W -  ½ ( A I W  + ~AI - ~ I n q ) ,  

E A_ = ½ ~AI -- A1 ~(HI-- H I ~ )  
H1 HI Al"'nI, q t] 

A0 =dB + IA1 -- I ~ A I  + O(H2), 

(68) 

(69) 

(70) 

(71) 
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where W is defined by 

with 

(~A1 - 2 A _ )  
W ~ ~ In q, (72) 

Ai 

q --= (1 - AiAI) .  (73) 

See [ 12,3] for a more complete derivation of these equations. The precise form of Eq. (71 ) 

turns out to be rather lengthy and is given in Appendix A of [ 12]. 

It is perhaps worth remarking that, from Eq. (62), the full space-time metric can be 
expressed in terms of the H ' s  and h's. Since the conformal structure is encoded into A, 

Eqs. (68)-(71) express the extraction of the A's from the full metric. 

3.4. The holonomy field equations 

In this section, we describe an important result obtained earlier [7], wherein the vacuum 

Einstein equations in the form 

+Fa~ = 0 (74) 

were imposed on the holonomy operator. The goal is to obtain field equations for the 

holonomy operator, and therefore we first need a relationship between the curvature tensor 

and the holonomy operator. 
It can be shown [7], using a non-Abelian version of Stokes' theorem, that the holonomy 

operator satisfies 
:N3 

H = + F~b)eaMbds = h (+) + H (-) (75) 

50 

and 
Do 

-~- f (Ft;  + fa-b)ea-m b ds = H f+) + h (-), (76) 

SO 

where the H and h with the plus and minus signs were defined in Section 3.2, s is an affine 

parameter along the generators of the light cone at x a with s so at x a. M a and ~ a  = are 

connecting vectors between the long legs of Ax and Zlx, respectively. See [7] for more 

details. 
The two Eqs. (75) and (76) can be inverted [7] to obtain Fa~ and F+ab explicitly in terms 

of the components of the holonomy operator. Specifically Fa~ and F ~  can be expressed 
as two derivatives of the H ' s  with respect to 0 ° = R. Now by using this expression for 
the curvature in + F ~  = 0 one obtains a differential relationship between the different 

components of H and H given by (see [7]) 

[q-lhc~,Rl, R + 8 [ q - I A ,  Rhu, R],R = [q - - I~  RHo~,R], R + ~[q-I  Hot, RI, R, (77) 
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where 

6 -- ~ / ~ -  1 and q = 1 - ARAR, (78) 
A R 

with R = ~ Z  = 0 °. 
Note that the Eqs. (77), which we refer to as the field equations, are three linear relations 

between the H and h with coefficients depending on Z via A l. They are our final set of 
equations. In the next section, we will use these with the Bianchi identities and the A ( H ) -  

relations to simplify the overall structure of the theory. 
Again, we remark, for clarity, that the dependent variables are now functions of 0 i and 

~',~. 

3..5. The full  theory 

We have at this point three sets of equations which are equivalent to the asymptotically 

fiat vacuum Einstein equations: 

- the three holonomy Bianchi identities: 

Chl - ~Hi + 2hill1 - 2Hlh2 + 2//2 = 0, (79) 

~h2 - -~H2 + h3H1 - H3(hl + 1) + hi ----- ~BHI,  (80) 

~h3 - ~H3 q- 2h2(H3 - 1) - 2H2h3 --= --~¢7B -k- 2~BH2, (81) 

- the holonomy field equations: 

[q- lhu,  R ] , R + ~ [ q - I A ,  R h ~ , R ] , R = [ q - I A ,  R H u , R ] , R + S [ q - I H ~ , R ] , R ,  (82) 

- the A (H)-relations: 

2(/~1 + 1)H1 
_ , ( 8 3 )  

A1 ~ AR = (/~l + l)(hl + 1) + H1HI 

A+ = W -  ½(A1W + ~A1 - ~ lnq), (84) 

[ ~(H1H1) AI~ In q (85) 
A _  = ½ ~ A I  - A1 H I M 1  

A0 ~--- drB -[- IA1 -- I ~ A 1  -k- O(H2), (86) 

and their conjugates. The first set involves the H ' s  and h's  and the data only, while the 
other two involve the H ' s  and h's  and the Ai. We think of the H ' s  and h's  as describing 
the "field" and the Ai, the "background". In this section we study the above equations and 
show how they can be reduced to a smaller and simpler set. 

This simplification procedure starts with the following important observation: Eq. (83) 
and its complex conjugate are two algebraic relations between the six quantities, viz., AR 
and -'~R, H1 ,H1,  hi and/q.  Solving for hi and f~l algebraically yields, 

h 1 = - -  (HI/•) - 1, (87) 
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hi = - ( H i / ~ )  - 1, (88)  

where ~ is given by 

_ ~ -  1 and q =  1--ARfII¢.  (89) 
A.R 

Thus h I and/~ 1 are not independent quantities and Eqs. (87) and (88) allow us to eliminate 
them completely. This algebraic structure extends to the other H ' s  and h's. We are able 

to solve, from Eqs. (79) and (80), for all the h's and completely eliminate them from the 
remainder of the analysis. 
The algebraic relationships between H,~ and hc, for all ot = { 1,2, 3} takes the form 

ha = -(Hc~/~) + Ga, (90) 

where G,~ is a function of AR and the preceding H's .  See [12] for explicit expressions for 

the G~. The important consequence of the above structure is that after eliminating the h's 
from the field equations (82) we obtain a very attractive set of three differential equations 

for Ha: 

02H~ xOH~ 02G~ OG~ 
OR ~----U + OR + Y H~ = tx--ff-~- + v O-R' (91) 

where X, Y,#  and v are functions only of AR and z]R. 
These three equations are linear with the only difference between them being in the homo- 

geneous terms: the first of them, the equation for Hi, is homogeneous with the coefficients 

depending only on A 1 (a function of R), while for the next pair the inhomogeneous terms 

are driven by the solutions of the previous ones. From this structure, if the homogeneous 

equation could be solved, the remaining ones could be solved by quadratures. 
A possible point of confusion concerning Eq. (91) could be where are other 0 i derivatives 

(other than R = 01 ) in such a basic equation (which is essentially Eq. (40)). The answer lies 

in the fact that as the (~', ~) vary, the R derivative spans a sphere's worth of (null) directions. 
To summarize, so far we have used the information contained in two (of the three) 

Bianchi identities, one of the (A, H)-equation, and all the field equations. The third Bianchi 

identity has not yet played any role. Assuming that we could solve Eq. (91) for H1 as a 
function (functional) of A1 we would have all the H,~ = Ha[A1, A1] and their complex 
conjugates. These expressions, which would be explicit functions of A j and A l, could then 

be substituted in the third Bianchi identity. The resulting equation would involve only A, 

A, and the data. The single resulting equation, involving only A1 andA1, i.e., 

~(H3/,~ + G3) - ~H3 + 2(H2/~ + G2)(H3 - 1) - 2H2(H3/~ + G3) 

= --~OB + 2oBH2, (92) 

would be our sought for equation for the determination of the characteristic surfaces and 

therefore the conformal metric of the Einstein space-time. 
The equation, however, can be manipulated, with the help of the leading terms (but not 

explicitly) of the remaining A(H)-relations, into a simpler and more attractive equation 
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that is referred to as the light cone cut equation (LCCE) whose solution directly yields the 

light cone cut function. 
From the solution to Eq. (91) (using the explicit form for X and Y) in the form 

H1 = I A I  + O(A 2) (93) 

we have from substitution into Eq. (92) 

~3A 1 = -4j~&B + higher-order terms, (94) 

where ~rB is free data given on 2 -+. Manipulating this and using Eq. (86) of the A(H)-  

relations we obtain, as 

~2A 0 ~--- j~zty B -Jr- ~2& B Jr- higher-order terms, (95) 

or, from the definition ~2Z0 = A0, 

~2~2Z = ~26 B + ~2o- B + higher-order terms (96) 

as our final equation for the light cone cut function Z. Although the higher-order terms 

have not been worked out explicitly, they can be obtained via a perturbation scheme (see 
Section 4). The solutions to Eq. (96) yield the conformal structure of asymptotically flat 
vacuum space-time. 

In the above analysis it was assumed that the solution to the equation for H1, namely, 

OZH1 xOH1 
OR - - - Y  + OR + YHI = 0 (97) 

was known. Since it is a linear second-order o.d.e, solutions for arbitrary A(R)  must exist, 
though it is not clear--nor is it likely--that we will be able to solve it explicitly. It will 
however, always be of the form 

H1 = ½A1 + O(A 2) (98) 

with the higher-order terms computable perturbatively. 

Since the LCCE (96) determines the conformal structure of vacuum space-times, the 
only remaining quantity to be determined is the conformal factor needed to convert the 

conformal metric into a vacuum metric. In the 0 i coordinate system the relation between 
the conformal metric g and the full metric ~ is given by 

~,ij = ff22 gi j  (99) 

It can be shown from Eq. (62) [12] that the conformal factor can be expressed as a simple 
function of H1 and H1, namely, 

~(22 = (1 + hi)(1 +/7/1) -I- H1H1. (100) 

(As an aside we remark that from Eq. (97), it is possible to show that the conformal factor 
(100) satisfies the equation 

dS2 
dR 2 -- Q(A)£-2, (101) 
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where Q = Q ( A )  is a simple known function of A i. The above equation is known in the 

literature [13] as the Einstein bundle equation.) 

4. A n  i t era t ive  s c h e m e  

Much of the understanding of the structure and meaning of our final equations has come 

from the application of an iterative scheme to the formal theory and looking at the leading 

behavior. In this section, we present the results obtained in linear order. 
We expand all quantities in powers of a small parameter e which measures the deviation 

from flatness. From the assumption that ~ enters as a multiplicative factor of  the Bondi 

shear, i.e., via ~CrB, it becomes clear that the expansions have the form 

(0) (l) (2) 
Z =  Z +~ Z + e  2 Z + ' - ' ,  (102) 

i (o)i (1)i ~2 (2)i 
e a =  e a  + ~  e a  q- e a  + ' " ,  (103) 

(1) ~) (3) 
A = g  A +~2 +E 3 A + ' " ,  (104) 

(1) ~/) (3) 
H = E  H +~2 +~3 H + - . - ,  (105) 

h ~2 (~) (3) = q-63 h + " "  (106) 

There is no zeroth order contribution to A or the holonomy operator since these quantities 

are zero for Minkowski space. Furthermore, a direct calculation (using Eqs. (87), (89) and 

(93)) shows that h begins at second order. 
Since A starts with order one in the perturbation expansion, it follows from the relation- 

(0) 
ship between Z and A that Z satisfies 

~2 m) 
Z a =  O, (107) 

whose solution is the Minkowski space light cone cut function 

(o) (o) 
Z = x a  g a ,  (108) 

where 

(o) 1 
g a (( ,  ~ ) = - - - ~ - ( 1  + ~'~, ( +  ~, i ( ~ " -  ~ ) , -  1 + ¢ ~ ) ,  P : ( l + ( ~ ) .  (109) 

, / 2 P  

4.1. Linearized gravity 

We begin the linearization with the three holonomy Bianchi identities, which are of first 

order: 

(1) . =  (1) 
(1 10) 
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( 1 )  _ ( 1 )  

H3= -~ H2, (111) 
_ ( 1 )  

H3 = ~ B ,  (112) 

where the h's have disappeared since they have no first-order contribution. The next step 
in the process of elimination would naturally be to solve the holonomy field equations 
obtaining the H's  in terms of the A. However, to first (and second order) we can circumvent 
this step and consider the first (A, H)-equations directly. It leads to an expression for Hi, 
which, with Eqs. (110) and (111), yields the first-order H,~ that automatically satisfy the 
field Eqs. (91) to first order. (For third and higher order we would have to solve the field 

equations before using the A (H)-relations for the simplification procedure.) 
We thus have 

(1) (1) 
HI = 1 Am , (113) 

(1) (1) 
H2=  19 A1,  (114) 

(1) . _  (1) 
H3= _¼~2 A1. (115) 

Our final equation for the cut function is the linearized third Bianchi identity, which, after 

substituting for H3, is 

~3AI = - - 4 ~ B .  (116) 

(Although we did not have to solve the holonomy field equations, it is a straightforward but 
slightly tedious process to verify that the expressions (113)-(115) for the H's  do satisfy the 
field equations. A minor subtlety in the calculation is that the linearization of the field equa- 
tions yields identically vanishing expressions, so that one must look at the equations at their 
first non-vanishing order. Performing the calculation, nevertheless, serves as a consistency 
check between the different sets of equations.) 

At this point we have used all the equations except the three remaining A(H)-relations, 

A _  = I ~ A I ,  ( 1 1 7 )  

A+ = - I ~ A 1 ,  (118) 

A0 = drB + 1A1 -- I ~ A 1 .  (119) 

These relations can be used to write (116) in the more symmetric form as the linearized 
version of the light cone cut equation: 

~2~2z = ~26B(Z) + ~2~rB(Z), (120) 

which is the light cone cut equation accurate to first order. In other words, this equation is 
equivalent to the linearized conformal Einstein equations. (The above equation for linear 
theory has been derived from the vanishing of the Bach tensor, by Lionel Mason [ 14].) 
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In linear theory (see Eq. (100)) the conformal factor equals 1, and therefore we have 

in this approximation we have not only the conformal Einstein equations but the Einstein 
equations themselves. 

Eq. (120), is to be thought of as an equation for Z, whose solution can be written as a 

sphere integral using the Green function of the operator ~2~2. See Appendix C of [12] for 

a derivation of the Green function ~ of this operator. In other words we can write 

Z = f (G~Zr-B(Z) + ~2~rB(Z ) dR, (121) 

with d S o as the sphere volume element in (r/, ~) coordinates, as the general solution to the 
asymptotically flat linearized vacuum Einstein equations. In principle, though we have not 

yet done so in practice, the higher-order terms could be calculated successively by similar 
integrals but with the integrands depending on terms to lower order in the perturbation 

scheme. 

5. Summary and conclusions 

We have obtained three sets of coupled equations, the holonomy Bianchi identities, 

the A(H)-relations and the "field equations" for the holonomy operator H and the light 

cone cut function Z which are equivalent to the full vacuum Einstein equations. These 
equations, which already have built into them the free choice of Bondi data aB (u, (, ~), can 

be manipulated and simplified (in structure) to one (complicated) equation, the LCCE, and 
a simple one for the conformal factor. On analysis, they yield perturbatively, a D'Adhemar- 
like formulation of general relativity. 

On a negative side these equations are quite unusual and are based on unfamiliar ideas 
and variables, and unfortunately are quite complicated. They nevertheless have some fea- 

tures of considerable attractiveness: new insights often can be gained from the use of new 
variables; the perturbative solutions, from given data, are essentially unique; as the per- 

turbation calculation proceeds to higher order to formalism yields the corrected light cone 
structure from the preceding order, in contrast to the usual perturbation theory which uses, 

at all orders, the Minkowski light cone structure. 
As a final comment, we remark that the work reported on here is the direct antecedent 

of another approach to General Relativity (the Null Surface Theory of GR, to be reported 

elsewhere) that is based solely on families of characteristic surfaces as the basic variable of 
the theory--without any mention of holonomies. The new view, which has certain similar- 
ities to the present work and will probably yield considerable simplifications over it, could 

not have been developed without the current approach. 
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